
Test Driven Development … in a nut shell

By Phlip

A rapid immersion into the software implementation cycle that merges designing,

coding, and testing by operating them backwards—testing, coding, and designing.

The Simplicity Principles
Simplicity is the opposite of complexity. It does not mean “turn your brain off” or survive

with simple-minded code. That grows tangled and complex. Simple reductions enforce
elegance.

After adding each tiny ability, run this checklist, in order, and
refactor until your code:

0. Obeys your team’s Sane Subset and style guidelines
1. Passes All Tests (TDD starts here)
2. Expresses Intent Clearly
3. Duplicates No Behavior
4. Minimizes Classes, Methods, and Statements.

Repeat those checks, throughout a project’s lifecycle, to keep it simple and understandable

at all times. Apply them in order—don’t remove that last bit of duplication if the result
wouldn’t express intent clearly. Some languages permit more obfuscation than others do. At
least put duplicated things next to each other.

Simple code is easy to test. Tested code is easy to simplify. These extremes reinforce
each other. Writing minimal Test Cases forces narrow dependencies between modules.
Then tests permit refactoring, and squeezing code down to a minimum. If you try to
remove some detail of complexity and make a mistake, the tests that required the features
that required the complexity should stop you.

The best way to go fast is to know exactly when to stop. Test-Driven Development is a
framework in which programmers automate the system that triggers a red light.

Mindshare
Before 150 years ago, doctors believed evil spirits caused disease. Then anesthetics

permitted doctors more time to perform surgeries. These doctors typically washed their hands
only after operating—to clean the blood off. Patients frequently caught post-operative
infections. “The operation was a success but the patient died.”

Around the 1850s, one Dr. Ignaz Philippe Semmelweiss experimented by washing his
hands before helping women give birth, instead of only afterwards. He reported a very high
success rate, but doctors had yet to learn better systems to report and value experiments and
statistics, and Semmelweiss used no physical model to advertise the results.

Then Louis Pasteur and Robert Koch spread the meme that diseases were tiny animals
eating our bodies from the inside. This physical model explained the hand-washing
experiments, backed by early research with microscopes. Doctors such as Scot Joseph Lister

added antiseptic solutions to their regimens. However, many doctors still refused to wash or
sterilize their instruments—even though these procedures obviously could not harm patients.
Doctors in leading and teaching roles, such as Pierre Pachet, the Professor of Physiology at
Toulouse, as late as 1872, would declaim that, “Louis Pasteur’s theory of germs is ridiculous
fiction.”

Today we recognize healthy bodies contain millions of tiny creatures living in a balance of
cooperation and clumsiness. Doctors decrease the risk of upsetting this balance by always
scrubbing a long list of things before even minor operations, using soaps and procedures that
are now required by law.

The programming industry lives in interesting times. While many programmers still believe
lack of design planning causes bugs, they have no conceivable reason not to write test code
before writing the tested code. That certainly could not hurt the patient. Many believe it helps
the patient, and some feel it’s the best way to design the patient. Evidence from the field will
quell these debates in due time—especially as Agile companies out-flank and surround the
slower ones, and collapse their leaders’ abilities to make decisions.

Here’s the operation.

The TDD Cycle
When you develop, use a test runner, written in the same language as the Production Code,

that provides some kind of visual feedback at the end of the test run. Either use a GUI-based
test runner that displays a Green Bar on success or a Red Bar on failure, or a console-based test
runner that displays “All tests passed” or a cascade of diagnostics, respectively.

Write failing tests, and briefly make them pass. Then refactor to improve maintainability;
testing every few edits, to ensure all tested behaviors stay the same.

Engage each action in this algorithm:

• Locate the next missing code ability you want to add
• Write a test that will only pass if the ability is there
• Run the test and ensure it fails for the correct reason
• Perform the minimal edit needed to make the test pass
• When the tests pass and you get a Green Bar, inspect the design
• While the design (anywhere) is low quality, refactor it
• Only after the design is squeaky clean, proceed to the next ability.

That algorithm needs more interpretation. Looking closely into each bold item reveals a

field of nuances. All are beholden to this algorithm and to the intent of each action. Each action
leverages different intents; they often conflict directly with other actions’ intents. Our
behaviors during each action differ in opposing ways. Repeated edits with opposing intents
anneal code’s structure and lubricate its articulations.

A code ability, in this context, is the current coal face in the mine that our picks swing at.
It’s the location in the program where we must add new behavior, or change current behavior.
Typically, this location is near the bottom of our most recent function. If we can envision one
more line to add there, or one more edit to make there, then we must perforce be able to
envision the complementing test that will fail without that line or edit.

“Write a test” can mean to write a new Test Case, and get as far as one assertion. If the
new test lines assume facts not in evidence—if, for example, they reference a class or method

name that does not exist yet—run the test anyway and predict a compiler diagnostic. This test
collects valid information just like any other (and it minimizes all possible reasons not to hit
that test button). If the test inexplicably passes, you may now understand you were about to
write a new class name that conflicted with an existing one.

Alternately, “Write a test” can mean to take an existing test function, and add new
assertions to it. Tests decouple new code from its own mechanics. Many small tests, with as
few as one assertion in each, often leads to clean code that assumes very little about its
environment. However, when our tests address libraries, such as GUI Toolkit libraries,
designed to provide dozens of coherent side-effects, we often need to end each test case with
many assertions. This re-uses the test’s scenario. GUI Toolkits optimize screen display time,
often at the expense of preparation time in memory. Our tests, by contrast, will create many
GUI objects in memory and then throw them away without displaying them. This can waste
time, so many of our tests will re-use existing objects a few more times before destroying them.

Work on the assertion and the code’s structure (but not behavior) until the test fails for the
correct reason. If it passes, step thru and inspect the code to ensure you understand it, and
ensure the true reason was indeed correct; then proceed to the next feature.

To fail for a correct reason, all other tests must still pass. Tests share code in fixtures, but
developing a new test might tweak those. The fixtures must still perform correctly for all other
tests before this one may proceed. Often one can write enough of the test that it executes, then
add an assertion to the test, and switch the assertion so it accepts the code’s current state. After
a successful run, adjust the assertion to now expect the improved behavior.

Just before passing the test is the most efficient point in the cycle to test the test, and make
sure it accurately enforces the required behavior.

Check that the diagnostic is what you expect. If the test fails for the wrong reason, your
mental model of the code’s situation may be wrong. If you fix a test failing for the wrong
reason, your fix could be wrong. Alternately, the test may have discovered a fault. Then change
the Test Case’s name, and use it to fix the problem.

All this work prepares you to make that minimal edit. Go ahead and write that line which
you have been anxious to get out of your system for the last seven paragraphs.

The edit is minimal because we live on borrowed time until the Bar turns Green. Correct
behavior and happy tests come (just slightly) before design quality. We might pass the test by
cloning a method and changing one line in it. If that’s the minimum number of edits, do it. Or,
re-write a method from scratch, even if it turns out very similar to an existing method. And
often the simplest edit naturally extends a clean design that won’t need refactoring, yet.

Ironically, one should work harder to ensure a test fails for the correct reason than one
should work to make it pass! The edit is minimal because it may do anything, including lying,
to pass the test. More tests will force out the lie. Practice this technique, even when you don’t
know the production code lies.

“Minimal” here means comprehensible, not sparse. Of course complete variable names,
proper formatting, etc, are worth typing. But could you manually reverse the edit, without the
Undo button? You should be able to manually find your changes and remove them. Don’t keep
too many edits in memory until getting back to a Green Bar, and don’t tangle the new code up
with the old, yet. Only change a few small areas.

If the minimal edit fails, and if the fault is not obvious and simple, just hit the Undo button
and try again. Anything else is preferable to bug hunting, and an ounce of prevention is worth a
pound of cure.

Now that we have a Green Bar, we inspect the design. Per the minimal edit principle, the
most likely design flaw is duplication. So, to teach us to improve things, we spread the
definition of “duplication” as wide as possible, beyond mere code cloning.

The book Design Patterns advises, “Abstract the thing that varies.” This is the reverse way
to say, “Merge the duplication that does not vary.” So merging duplicated behavior together
may tend to approach an object model with the quality of a Pattern.

To refactor, we inspect our code, and try to envision a design with fewer moving parts, less
duplication, shorter methods, better identifiers, separated concerns, and deeper abstractions.
Start with the code we just changed, and feel free to involve any other code in the project. But,
during this step, never change functionality—only design. But we may change it anywhere in
the program. This recovers the design from the minimal edit in only one small area. Frequent
refactors irresistibly pull much of your code, and tests, towards methods with only 1 to 3
statements or operations in them.

If we cannot envision a better design, we can proceed to the next step anyway. Seek
minimal edits that will either improve the design or lead to a series of related edits that might
lead to an improvement. Between each edit, run all the tests. If any test fails, hit Undo and start
again.

If a design contains related problems, don’t refactor in order from hard to easy. Refactor
from easy to easy. Start by picking the low-hanging fruit.

The level of cleanness is important here. You may have code quality that formerly would
have passed as “good enough”. Or you may become enamored of some new abstraction that
new code might use, possibly months from now, or minutes. Snap out of it. The path from cruft
to new features is always harder than the path from minimal elegance to new features. Fix the
problems, including removing any speculative code, while the problems are still small.

If you see duplication, but can’t imagine how to improve its design without obfuscating
what it does (or can’t imagine any way at all), move all the duplicating lines next to each other.
This practice forms little tables, with columns that are easy to document and scan.

We may add assertions at nearly any time; while refactoring the design, and before
proceeding to the next ability. Whenever we learn something new, or realize there’s
something we don’t know, we take the opportunity to write new assertions that express this
learning, or query the code’s abilities. As the TDD cycle operates, and individual abilities add
up to small features, we take time to collect information from the code about its current
operating parameters and boundary conditions.

Boundary conditions are the limits between defined behavior and regions where bugs might
live. Set boundaries for a routine well outside the range you know production code will call it.
Research “Design by Contract” to learn good strategies; these roll defined ranges of behaviors
up from the lower routines to their caller routines. Within a routine, simplifying its procedure
will most often remove discontinuities in its response.

Parameters between these limits now typically cause the code to respond smoothly with
linear variations. The odds of bugs occurring between the boundaries are typically lower than
elsewhere. For example, today’s method that takes 2, 3 and 5 and returns 10, 15 and 25,
respectively, tomorrow is unlikely to take 4 and return 301. Like algebraic substitutions
reducing an expression, duplication removal forces out special cases.

After creating a function, other functions soon call it. Their tests engage our function too.
Our tests cover every statement in a program, and they approach covering every path in a
program. We add features in order of business value, so the code of highest value—written

earliest—experiences the highest testing pressure and the most test events for the remaining
duration of the project. The cumulative pressure against bugs make them extraordinarily
unlikely.

If you are curious, or code does something unexpected, or you receive a bug report, always
write a new test. Then use what you learned to improve design, and write more tests of this
category. If you treat the situation “this code does not yet have that ability” as a kind of bug,
then the TDD cycle is nothing but a specialization of the principle “capture bugs with tests”.

Computer Science vs. Software Engineering
Researching new, complex algorithms is Computer Science; an open-ended quest into the

unknown. Software Engineering is a system to turn the results of research into money, so avoid
inefficient endeavors, such as researching new, complex algorithms.

TDD is a very good tool for researching computer science, but its results are excessively
sensitive to initial conditions. Programs are simple algorithms—iteration, recursion, etc.
Refactoring searches the space of designs, for simple algorithms, to find a good fit. Programs
reuse published algorithms behind simple interfaces, such as std::sort<>(). When TDD
seeks a new complex algorithm, early refactors that obeyed the Simplicity Principles can lead
to abstractions that prevent, not enable, a clear and efficient algorithm later on.

Strong the Dark Side Is
TDD’s force can also cause problems. Used alone, it cannot gather requirements or prevent

gold plating. Used incompletely, it can devolve code. If you frequently test but skip refactoring,
and leave huge matching gaps in testage and code, the code will fill up with cruft. If your tests
make wild assumptions about your exact environment, and if you infrequently integrate, your
colleagues will blame your tests. Frequent testing aggressively reinforces these activities, and
provides a very high apparent velocity.

Teach your colleagues to write tests on your code, and learn to write tests on theirs too. If
they write a test that fails due to missing abilities, not faults in deployed abilities, treat the
failing test as a feature request, and get it prioritized.

Test Cases
Here’s a detail of a simple test in a familiar language, without the production code that

makes it pass:

 int main()
 {

 Source aSource("a b\nc, d");

 string
 token = aSource.pullNextToken(); assert("a" == token);
 token = aSource.pullNextToken(); assert("b" == token);
 token = aSource.pullNextToken(); assert("c" == token);
 token = aSource.pullNextToken(); assert("d" == token);
 token = aSource.pullNextToken(); assert("" == token);
 // EOT!
 }

Passing the test requires objects of type Source to parse strings, ignoring spaces and
commas. But to write that test, following the above rules, one only adds one line at a time, and
makes the code pass it, before adding the next line.

This technique often generates tests with a stack of statements and assertions, like the above
example. If that were production code, one should “roll it up” into a table, or something, to
make it shorter and easier to understand & extend. But tests’ Coding Standard differs from
Production Code’s. They trade parsimony for self-documentation.

That test explicitly documents a boundary condition—End Of Text will return a blank string
"". Production Code, parsing a known string, wouldn’t bother to call the parser one more time.

But projects larger than this should not pack all their assertions into main(). Split
assertions up into functions called Test Cases. Each is essentially one “paragraph” of testage,
following the “Triple A” format:

• Assemble the sample object & data: Source aSource("a b\nc, d");
• Activate the target feature: token = aSource.pullNextToken();
• Assert the results: assert("a" == token);

While tests code must appear “obvious”, and should not indulge in advanced

architectures, tests that duplicate behavior should merge it into common methods. More
than one Test Case sharing the same private Test Fixtures form a Test Suite—typically as
methods of a Test Suite class. However, Test Cases must operate independent of each
other, so they could execute in any order. Some Test Suites execute their cases in
alphabetical order, some in their source order. If one Test Case writes a little file, for
example, and programmers know which Test Case comes next, programmers must not
exploit this information to re-use that file. The most common two fixtures are setUp()
and tearDown(). Test Suites call these before and after calling each case, respectively.
setUp() will initialize Test Suite member variables that each of its Cases can use, and
tearDown() will clean up any after-effects of each case.

Some Test Fixtures are important (especially the kinds that this book will request), so
they should merge into test utility modules that support many Test Suites.

So the pseudo-code to run each Test Case in a Suite is:

• Construct a Test Suite object
• Call setUp()
• Call the Test Case

o Assemble
o Act
o Assert

• Call tearDown()
• Destroy the Test Suite object

Some test runners count the number of failing assertions. Test rigs in general need that

ability, but Test-Driven Development does not strictly require it. A single failing assertion is
cause to suspect the most recent edit.

Here’s a suite that calls a fixture (test_a_b_d()) to Act and Assert, but not Assemble.
The fixture verifies that whatever input we Assemble, the parser shall pull the tokens a, b & d,
but c is always commented out:

 struct TestTokens: TestCase
 {

 void test_a_b_d(string input)
 {
 Source aSource(input);
 string
 token = aSource.pullNextToken();
 CPPUNIT_ASSERT_EQUAL("a", token);
 token = aSource.pullNextToken();
 CPPUNIT_ASSERT_EQUAL("b", token);

 // token = aSource.pullNextToken();
 // CPPUNIT_ASSERT_EQUAL("c", token);

 token = aSource.pullNextToken();
 CPPUNIT_ASSERT_EQUAL("d", token);
 token = aSource.pullNextToken();
 CPPUNIT_ASSERT_EQUAL("", token); // EOT!
 }

 };

 TEST_(TestTokens, elideComments)
 {
 test_a_b_d("a b\n //c\n d");
 test_a_b_d("a b\n // c \"neither\" \n d");
 test_a_b_d("//\na b\n // c \"neither\" \n d//");
…
 test_a_b_d(" // \na b\n // c \"neither\" \n d//");
 }

 TEST_(TestTokens, elideStreamComments)
 {
 test_a_b_d("a b\n /*c*/\n d");
 test_a_b_d("a b\n /* c \"neither\" */\n d");
…
 test_a_b_d("//c\na b\n // c \"neither\" \n d/* */");
 }

The TEST_() macro builds a list of Test Cases, each inheriting TestTokens, so a

Test Runner can run them all. Without the TEST_() macro, we would need to copy the
name of each test case’s method into a list of tests. If we forget one, we’d get a false
positive Green Bar.

The … mark indicates we fear boring the compiler less than the reader. Those tests contain
many more lines that cover various situations.

When a Test Fixture, such as test_a_b_d(), abstracts from its sample data, such as "a
b\n //c\n d", this book call the sample data a Test Resource. As Test Fixtures grow
useful, their Test Resources can move into a database, with a simple user interface. That

permits anyone who thinks of sample data to enter it, without programming, and see their
results. Some “test resource databases” form part of a project’s Customer Acceptance Tests.

Continuous Testing
The most ambitious research in TDD focuses on “Continuous Testing”, where your editor

chronically runs your tests, at every relevant juncture, providing Zero Button Testing. Your
editor continuously reflects the testing status, and might color failing test cases pink. Less
frantically, editors might test each time programmer saves the code. These techniques require
more practice, and more tuning and tweaking of your editor’s abilities.

Time vs. Effort
If our libraries had themselves emerged test-first, we would not need to begin our projects

with so much research to build Test Fixtures that apply the OBT principles. So I must make a
case, again, for how important these principles are to the rest of the project’s schedule. The up-
front investment will pay for itself.

The Code-and-Fix line starts easy, especially under systems like GUI Toolkits that bundle

with Wizards and form painters, to write the first dozen features for you. But as you run out of

wiggle room to rapidly change code without causing obscure bugs (and as you go where such
Wizards can’t follow), that line trends up into unsustainable regions. Once there, each new
effort adds bugs, and these take time. When they are fixed, you have the choice between letting
design quality slide, or adding more bugs improving it.

Everyone has experienced code bases maintained for a few years which became too hard to
change, and were thrown away. For example, Microsoft replaced MSDev.exe (Visual Studio 6)
with DevEnv.exe (Visual Studio 7), instead of upgrading. The excuse “but MSDev.exe is very
big, and DevEnv.exe is very different” should not matter.

Many libraries immediately make Test-Driven Development very difficult. You must invest
up-front time learning how operate those libraries nearly opposite to the way their tutorials
advertise. Lack of experience writing tests also afflicts this phase.

The high-effort areas of each kind of project do not just take a lot of time. They interfere
with tracking and estimating. The higher a point on the chart, the wider the spread between
estimates and actual times, and the higher risks of delays to research into mysteries and to
concoct patches & compromises. High-risk activities cause cruft, because refactoring their
excess code away similarly adds risk. Risks cause stress.

Heroism is not sustainable

After you cross the peak, and enter the low-effort phase, your environment permits easy

Flow with minimal distractions. Expect to encounter such a peak, and schedule time to cross it,
for each new library. Software lifecycle books call this the “Exploration Phase”, or a “Spike”.

If a new library troubles you, determine if you’ll need an exploration phase. Convert its
sample code into a Learner Test, then see how easily that test starts answering your questions.
We’ll call the exploration phase for a specific library “Bootstrapping”, before we learn to write
the first relevant test for a given situation.

Down in your own coal mine, tests are canaries whose nervousness shows the presence of
evil design vapors. However, when entering someone else’s coal mine—a library you must
construct tests around—expect to expend many nervous canaries!

Your occupational behavior may raise naïve concerns here. Suppose the program needs to
Get a complex variable, and you first spend a lot of time learning to Set that variable—so your
test can transmit sample data into the tested function, of course. The potential benefits might
not be apparent.

If it does not have a test (or a visual check), it does not exist

Adding features without their tests creates “artificial velocity” that defers the hard

part of programming until later, when it grows much harder. Adding tests and features
without refactoring creates artificial velocity, too.

The Agile literatures speaks of many fairly aggressive coding activities—Test Fixtures,
Merciless Refactoring, Incremental Testing, Continuous Testing, Continuous Integration—etc.
They all represent a significant effort to learn, and to configure your build scripts and
environment.

These only burden a project as it starts. When enough tests grow and share useful
fixtures, when code grows flexible, and when build scripts robustly enable a team’s
practices, then we will write new complex fixtures less frequently. We will refactor in
tiny nudges, and rely on our environment to take care of administrative details. A mature
TDD development cycle consists mostly of re-using existing fixtures, adding 2- or 3-line
tests, and trivially passing them.

The feeling of propulsion and momentum is unprecedented in software engineering.

	Test Driven Development … in a nut shell
	
	
	
	
	
	
	By Phlip

	The Simplicity Principles
	Mindshare
	The TDD Cycle
	Computer Science vs. Software Engineering
	Strong the Dark Side Is
	Test Cases
	Continuous Testing
	Time vs. Effort

