

Contractive Delegation
by Henry Kissinger

Well-factored code often has many small functions. If each adds value, and doesn’t just

pass the buck, then what do they all do? Typically, they contract their input by making it more
specific. Then they delegate these specific data to a delegatee. For example, this function takes
a fileName, augments it with the current document, then passes them both into the File
system delegatee:

 def save(fileName)
 string = get_chars(0, get_length())
 File.open(fileName, "w").write(string)
 end

Every short method solves one part of the problem, and delegates the remaining part of the
problem to other methods. Every method transforms its input before passing it to other
methods, and/or transforms the output of other methods before returning to the caller.

Refactoring a big long ugly function—past the Method Object Refactor—can lead to many
small delegates. Refactoring these to remove duplicated delegation can lead to Contractive
Delegation.

After implementing a complex feature, and after the first round of refactoring, the design
might contain many absurd chains of delegation, where A calls B calls C repeatedly. The
second refactoring phase isolates and removes the intermediate B methods. This level of
abstraction forces special cases to isolate from each other efficiently. Refactoring to merge
behaviors forces structures to flex.

Each delegating method accepts its inputs, contracts them by adding this method’s special
ingredient, then passes the inputs to the next delegate. New features are very easy to add to
code following Contractive Delegation. Code following these patterns can be a little difficult to
read. No more 30-line methods with obvious procedures.

End a refactoring session with Rename Method Refactors. Name things
after their new intentions.

If you see duplication, but can’t imagine how to improve its design without obfuscating

what it does (or can’t imagine any way at all), move all the duplicating lines next to each other.
This practice forms little tables, with columns that are easy to document and scan.

Phlip Page 1 11-Aug-04

Early refactors often stabilize a design, enabling new features of the same kind without
refactors. Suppose you add two abilities, and they generate similar statements. Merge
duplication into an abstraction just as soon as two abilities require it. The odds that future
abilities will reuse that abstraction are now very high, because applications by nature present
users with lists of similar options. This simple technique prevents code from becoming
increasingly disordered and hard to change.

Good designs approach the “Open Closed Principle”, which essentially means (in an
organic design context), “Reuse me the way others have reused me. Don’t reuse me by typing
on me, adding ‘if’ statements for special cases, etc. Reuse me by adding to one of my lists—
metadata, derived classes, clients, plugged-in classes, etc. I am Open for re-use but Closed to
edits.”

Refactor tests too, but follow slightly different rules. Test cases will duplicate much trivial
behavior on purpose, to self-document. Merge such duplication to improve readability, and to
create fixtures that make new tests easier to write.

Abstract Tests
MiniRubyWiki (MRW) uses a variation of the practice “Version with Skins”, so its tests

constrain its behavior under two different kinds of servers.

http://minirubywiki.rubyforge.org/

A “Wiki Wiki” is a dynamic Web site that looks like this:

When you click the big purple “FrontPage”, the server searches for that string in its Web

site, and returns an XHTML page containing links to all pages containing the text “FrontPage”.
The module miniServer.rb implements a minimal Web server based on a raw socket

connection. It pulls strings directly out of a TCP/IP connection and parses their variables,
obeying only the most important details of the HTTP recommendations. This efficiently
bypasses many features that “real” Web servers enforce. MRW can serve on port 8001, to
avoid other servers.

Another skin, wiki.rb, bonds with real Web servers via the traditional Common Gateway
Interface. I test that with Apache httpd, serving on the default HTTP port, 80.

Both servers front the same Wiki features, so MRW’s test rig defines the tests once, and
calls them twice, following the Abstract Template Pattern.

Phlip Page 2 11-Aug-04

The base test suite wraps Internet Explorer, to fetch and interpret pages. All tests follow the
same general pattern. They surf() to a specific URL, return a page, find some text on it, and
compare that text to a reference:

 class TestViaInternetExplorer < Test::Unit::TestCase
…
 def test_defaultToFrontPage()
 surf('')

 regexp =
 /href="#{getPrefix()}SearchPage(&|\?)search=FrontPage"/

 assert_match(regexp, getHTML())
 end
…
 end

That case reuses fixtures, so it’s short, inscrutable, and only obvious if you know that @ie

is an unseen member variable referring to an instance of Internet Explorer, and surf()
navigates it to a Wiki page.

surf() wears two concrete skins:

class TestMiniServer < TestViaInternetExplorer
 def getPrefix()

 return ''
 end

…
 def surf(page)
 href = "http://localhost:8001/#{page}"
 navigate(href)
 end
…
end

class TestApache < TestViaInternetExplorer
…
 def getPrefix()
 return 'wiki.rb\?'
 end

 def surf(page)
 href = "http://localhost/wiki.rb?#{page}"
 navigate(href)
 end
…
end

TestMiniServer#surf() heads for http://localhost:8001/, and Test-

Apache#surf() hits http://localhost/wiki.rb?. The default Wiki page is
FrontPage, so surf('') is the equivalent of surf('FrontPage'). The example test
ensures both miniServer.rb and wiki.rb return a page with a hyperlink to the search
system containing “FrontPage”.

Phlip Page 3 11-Aug-04

The fulcrum of the test is the overridden method getPrefix(). It returns either an empty
string or 'wiki.rb\?'. When getHTML() queries IE for the HTML contents of its page, our
Regular Expression Match then determines that our page has a link on it that searches all Wiki
pages for “FrontPage”. That’s the FrontPage’s title’s behavior when you click on it, so only
only miniServer.rb’s FrontPage will contain this:

<a href="SearchPage&search=FrontPage" title=
"Click to search for this string">FrontPage

But the Apache’s FrontPage contains a longer href value:

<a href="wiki.rb?SearchPage&search=FrontPage" title=
"Click to search for this string">FrontPage

To detect that difference, the test’s assert_match() calls getPrefix(), nestled inside

its Regular Expression Match:

 regexp =
 /href="#{getPrefix()}SearchPage(&|\?)search=FrontPage"/

 assert_match(regexp, getHTML())

Ruby embeds executable statements inside strings or regular expressions, escaped with

#{}, so #{getPrefix()} introduces different search string details for each skins.
This test program’s main() function adds TestMiniServer.suite() and

TestApache.suite() to its list of test cases, so both concrete suites express the same shared
tests, including test_defaultToFrontPage():

A TestRunner kicks off the game by calling Test::Unit::TestCase::suite(), to

fetch a global list of cases. For each case, it calls setUp(), the case, and tearDown(). Virtual
dispatch permits setUp() to call a concrete implementation of surf(), in one of the derived
classes. Then test_defaultToFrontPage() calls a concrete implementation of
getPrefix(), again in one of the derived classes:

Phlip Page 4 11-Aug-04

That sequence diagram illustrates Contractive Delegation. TestRunner and TestCase

are completely generic. TestMiniServer and TestApache are specific, and TestVia-
InternetExplorer is partially generic. Method calls going to the right become more
generic. The parameters to those methods are specific—they contract their delegates. Method
calls to the left dispatch virtually into concrete test classes, and fetch data out for those
parameters.

Sharing a test suite between many skins (or versions or flavors) helps engineers think about
only one skin without accidentally breaking another one.

Phlip Page 5 11-Aug-04

	Contractive Delegation
	Abstract Tests

